SFI og KORA er fusioneret. Vores nye navn er
VIVE - Det Nationale Forsknings- og Analysecenter for Velfærd.
Se mere på vive.dk

Decomposing wage distributions on a large data set - a quantile regression analysis of the gender wage gap
Hent udgivelsen (376 KB)
Del
Working paper

Decomposing wage distributions on a large data set - a quantile regression analysis of the gender wage gap

Del
This paper presents and implements a procedure that makes it possible to decompose wage distributions on large data sets. We replace bootstrap sampling in the standard Machado-Mata procedure with ‘non-replacement subsampling’, which is more suitable for the linked employer-employee data applied in this paper. Decompositions show that most of the glass ceiling is related to segregation in the form of either composition effects or different returns to males and females. A counterfactual wage distribution without differences in the constant terms (or ‘discrimination’) implies substantial changes in gender wage differences in the lower part of the wage distribution. - See more at: http://www.sfi.dk/s%C3%B8geresultat_visning-7351.aspx?PID=18906&NewsID=4450#sthash.u99blzR0.dpuf
Forfattere Karsten Albæk, SFI
Lars Brink Thomsen
Udgivelsesdato 01.06.2014
Sprog Engelsk
Sidetal 32
Publikationsnr. WP 06:2014
Forskningsemne

Denne publikation hører under Beskæftigelse og arbejdsmarked
emneord: Arbejdsmarkedet, Ligestilling, Virksomheder

Søg på sfi.dk